

Cambridge International Examinations

Cambridge Ordinary Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY 5070/22

Paper 2 Theory

October/November 2017
1 hour 30 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Section A

Answer all questions.

Write your answers in the spaces provided in the Question Paper.

Section B

Answer any three questions.

Write your answers in the spaces provided in the Question Paper.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 19 printed pages and 1 blank page.

Section A

Answer all the questions in this section in the spaces provided.

The total mark for this section is 45.

A1 (a) Choose from the following elements to answer the questions.

aluminium
carbon
hydrogen
iron
magnesium
nitrogen
oxygen
sodium
vanadium

Each element may be used once, more than once or not at all.

Which element:

(1)	is a catalyst in the Haber process,
	[1]
(ii)	makes up 21% of dry air,
	[1]
(iii)	can be formed when hydrocarbons are cracked,
	[1]
(iv)	forms aqueous ions with a 3+ charge which give a white precipitate when added to aqueous ammonia,
	[1]
(v)	has an atom with only three electrons in its outer shell?
	[1]

(b) Complete the table to show the number of electrons and neutrons in the potassium atom and in the oxide ion.

	number of electrons	number of neutrons
⁴¹ ₁₉ K		
¹⁷ ₈ O ²⁻		

[4]

[Total: 9]

A2	Sod	lium	chloride, NaC l , and magnesium chloride, MgC l_2 , are both ionic compounds.	
	(a)		scribe the arrangement of the ions and the type of attractive forces between the ions d magnesium chloride.	in
		arra	ingement	
		type	e of attractive forces	
				[2]
	(b)		lain why solid magnesium chloride does not conduct electricity but aqueognesium chloride does conduct.	us
				[2]
	(c)	Stat	te the electronic configuration of a magnesium ion and of a chloride ion.	
			gnesium ion	
		Ì		
		CHIC	oride ion	[2]
	(d)		orine and hydrogen are manufactured by the electrolysis of concentrated aqueo	us
			orine is released at the positive electrode and hydrogen is released at the negation	ive
		(i)	Why are hydrogen ions and not sodium ions discharged at the negative electrode?	
				[1]
		(ii)	Construct the equation for the reaction at the negative electrode.	
		(11)		F.4.
				[1.
		(iii)	Describe a test for chlorine.	
			test	
			result	
				[2]

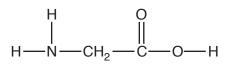
(e) (i)	Give the formulae of the four ions present in aqueous sodium chloride.		
		[1]	
(ii)	Suggest why the solution becomes alkaline as the electrolysis proceeds.		
		[2]	
		[Total: 13]	

Me	tals have characteris	stic physical properties such as good electrical and thermal conductiv	ity.		
(a)	Give two other phy	ysical properties which are characteristic of metals.			
	1				
	2		[2]		
(b)	The table gives sor	me observations about the reactions of four metals with water.	[-]		
(2)					
-	metal	observations			
	cerium	reacts slowly with cold water			
	iron	reacts with steam when red-hot			
	magnesium	reacts slowly with hot water			
	sodium	reacts rapidly with cold water			
	Put these metals in	n order of their reactivity with water.			
_	least reactive —	most reactive			
			[1]		
(c)	The equation for th	ne reaction of iron with steam is shown.			
		3Fe + $4H_2O \rightarrow Fe_3O_4 + 4H_2$			
	(i) Calculate the with excess st	maximum mass of $\mathrm{Fe_3O_4}$ that can be formed when 39.2g of iron ream.	eacts		
	Give your ansv	wer to three significant figures.			

mass of Fe_3O_4 = g [3]

© UCLES 2017 5070/22/O/N/17

A3


	(ii)	Calculate the maximum volume of hy measured at room temperature and pr	-	produced by this	s reaction, when
		volume	e of hydrogen = .		dm³ [2]
(d)	Pur	e iron can be obtained by the following	reaction.		
		$Fe(CO)_5 \rightarrow$	Fe + 5CO		
	Give	e one hazard associated with this react	ion.		
					[1]
					[Total: 9]

A4 Lavandulol is found in lavender plants.

$$CH_3$$
 $C=CH-CH_2-CH-C$ CH_3 CH_3 CH_3 CH_3

(a)	(i)	Give the molecular formula for lavandulol.						
	(ii)	Lavandulol contains an –OH group.						
		Name the homologous series of compounds which contain the –OH group.						
(b)	Lav	andulol is an unsaturated compound.						
	Des	scribe a test for an unsaturated compound.						
	test							
	resi	ult[2]						
(c)		Lavender flowers contain a variety of coloured compounds. These can be extracted from the flowers to give a solution of the coloured compounds.						
	Des	scribe how to use paper chromatography to identify these coloured compounds.						
	You	may use a labelled diagram in your answer.						
		[3]						

(d) Compound G is found in the leaves of lavender plants.

Compound **G** can undergo polymerisation.

Draw a section of the polymer to show two repeat units.

[2]

[Total: 9]

A 5	Dilu	te ethanoic acid reacts with sodium carbonate.
	Sod	lium ethanoate, CH ₃ COONa, and two other compounds are formed.
	(a)	Construct the equation for this reaction.
		[2]
	(b)	The reaction of dilute ethanoic acid with sodium carbonate is endothermic.
		Explain in terms of bond making and bond breaking why this reaction is endothermic.
		[2]
	(c)	Ethanoic acid reacts with alcohols to form esters.
		Give one use of esters.
		[1]
		[Total: 5]

BLANK PAGE

Section B

Answer three questions from this section in the spaces provided.

The total mark for this section is 30.

B6 At high temperatures, hydrogen reacts with iodine to form hydrogen iodide.

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g) \Delta H = +53.0 \text{ kJ/mol}$$

		20, 20,	
(a)	Des	scribe and explain the effect, if any, on the position of equilibrium when	
	(i)	the pressure is increased,	
			.[2]
	(ii)	the temperature is decreased.	
			.[2]
(b)	Hyd	lrogen iodide reacts with water to form a strong acid, hydriodic acid, HI(aq).	
	(i)	What is meant by the term strong acid?	
			.[1]
	(ii)	Construct the equation for the dissociation of hydrogen iodide molecules into ions.	
			.[1]
(c)	Нус	lrogen iodide reacts with ethene to form iodoethane.	
		$CH_2 = CH_2 + HI \rightarrow CH_3 CH_2I$	
	Wha	at is the name of this type of reaction?	
			.[1]

(d) The table shows some properties of five alkenes.

alkene	formula	melting point /°C	boiling point /°C
ethene	C ₂ H ₄	-168.9	-103.6
propene	C ₃ H ₆		-47.3
butene	C ₄ H ₈	-185.2	-6.2
pentene	C ₅ H ₁₀	-165.0	30.0
hexene	C ₆ H ₁₂	-139.7	63.4

(i)	How does the boiling point change as the number of carbon atoms in the formula of the alkenes increases?
	[1]
(ii)	What is the physical state of butene at -7 °C? Explain your answer.
	[1]
(iii)	Why is it difficult to predict the melting point of propene using only the information from the table?
	[1]
	[Total: 10]

B7 The table shows the melting points and relative electrical conductivities of three elements from Period 3 of the Periodic Table.

property	element							
	magnesium	silicon	sulfur					
melting point /°C	649	1410	113					
relative electrical conductivity	good conductor	poor conductor	does not conduct					

(a)	Use	e ideas of structure and bonding to explain	
	(i)	the difference in the melting points of magnesium and sulfur,	
			[2]
	(ii)	the difference in the electrical conductivity of magnesium and sulfur.	
			[2]
(b)	Silio	con has a structure similar to diamond.	
	Ехр	lain why silicon has a high melting point.	
			[2]

(c)	A 4	0.5g sample of a chloride of sulfur contains 21.3g of chlorine.
	(i)	Deduce the empirical formula of this chloride of sulfur.
		empirical formula[3]
	(ii)	The relative molecular mass of this chloride is 135.
		Deduce the molecular formula of this chloride.
		molecular formula[1]
		[Total: 10]

B8	Pota	assium nitrate, potassium sulfate and potassium phosphate are used in fertilisers.
	(a)	Calculate the percentage by mass of potassium in potassium sulfate, $\rm K_2SO_4.$
	(b)	
		test
		result[2]
	(c)	Explain why nitrates in solid fertilisers spread onto soil are able to leach through the soil easily.
		[1]
	(d)	Nitrates are responsible for eutrophication.
		What is meant by the term <i>eutrophication</i> ?
		[2]

(e) Dilute phosphoric acid, $H_3PO_4(aq)$, reacts with aqueous potassium hydroxide to make potassium phosphate.

$$H_3PO_4(aq) + 3KOH(aq) \rightarrow K_3PO_4(aq) + 3H_2O(l)$$

A student titrates 25.0 cm 3 of $\rm H_3PO_4(aq)$ with 0.200 mol/dm 3 KOH(aq).

 $12.5\,\mathrm{cm^3}$ of KOH(aq) is required to react exactly with the $\mathrm{H_3PO_4(aq)}$.

Calculate the concentration of the ${\rm H_3PO_4(aq)}$.

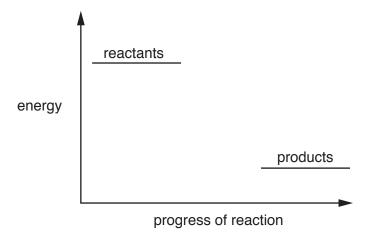
concentration of $H_3PO_4(aq) = \dots mol/dm^3$ [3]

[Total: 10]

B9 Nitrogen(V) oxide decomposes on heating to form nitrogen(IV) oxide and oxygen.

$$2 \mathrm{N_2O_5(g)} \, \longrightarrow \, 4 \mathrm{NO_2(g)} \, + \, \mathrm{O_2(g)}$$

(a) The table shows how the rate of reaction varies with the concentration of ${\rm N_2O_5}$.


concentration of N ₂ O ₅ (g) in mol/dm ³	rate in mol/dm ³ /s
3.2	6.39
1.6	3.15
0.8	1.63

(i)	Describe how the rate of this reaction changes with the concentration of $\mathrm{N_2O_5}.$
	[1]
(ii)	Explain your answer to (a)(i) in terms of collision theory.
	[2]
(iii)	Describe and explain the effect of increasing the temperature on the rate of this reaction.
	[2]
Sul	fur dioxide is an atmospheric pollutant.
(i)	Describe one source of the sulfur dioxide in the atmosphere.
	[1]
(ii)	The oxidation of sulfur dioxide to sulfur trioxide in the atmosphere is catalysed by $\operatorname{nitrogen}(\operatorname{IV})$ oxide.
	$SO_2 + NO_2 \rightarrow SO_3 + NO$
	$NO + \frac{1}{2}O_2 \rightarrow NO_2$
	Nitrogen(IV) oxide speeds up the rate of reaction. Which other property of a catalyst is shown by these equations?
	[41]

© UCLES 2017 5070/22/O/N/17

(b)

(c) (i) An incomplete energy profile diagram for the oxidation of sulfur dioxide to sulfur trioxide is shown.

On the diagram:

- draw and label the pathway for the uncatalysed reaction,
- draw and label the pathway for the catalysed reaction. [2]

[Total: 10]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

S
Ξ
ē
Ξ
ē
m
ठ
<u>_</u>
able
Tak
<u></u>
. <u>0</u>
ipc
.0
Ξ
ø
4
The
ᅩ

			2	Ρ̈́	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	Rn	radon			
		\				6	Щ	fluorine 19	17	Cl	chlorine 35.5	35	Ā	bromine 80	53	П	iodine 127	85	Αt	astatine -			
		>				8	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>a</u>	tellurium 128	84	Ро	polonium –	116	_	livermorium -
		>				7	Z	nitrogen 14	15	۵	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	Bi	bismuth 209			
		≥				9	ပ	carbon 12	41	S	silicon 28	32	Ge	germanium 73	20	S	tin 119	82	Ъ	lead 207	114	Εl	flerovium –
		≡				2	Ω	boron 11	13	Ρl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	<i>1</i> 1	thallium 204			
												30	Zu	zinc 65	48	g	cadmium 112	80	Ъ	mercury 201	112	ပ်	copernicium
												59	Cn	copper 64	47	Ag	silver 108	62	Αn	gold 197	111	Rg	roentgenium -
	roup											28	ïZ	nickel 59	46	Pd	palladium 106	8/	五	platinum 195	110	Ds	darmstadtium -
(5											27	රි	cobalt 59	45	格	rhodium 103	22	Г	iridium 192	109	M	meitnerium -
			_	I	hydrogen 1							26	Ь	iron 56	44	Ru	ruthenium 101	9/	Os	osmium 190	108	H	hassium -
									_			25	Mn	manganese 55	43	ပ	technetium -	75	Re	rhenium 186	107	Bh	bohrium –
							pol	SSE				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≯	tungsten 184	106	Sg	seaborgium -
					Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	qN	niobium 93	73	ц	tantalum 181	105	Dp	dubnium –
							atc	<u> </u>				22	i=	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	Ŗ	rutherfordium -
												21	Sc	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids	
		=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	လွ	strontium 88	99	Ba	barium 137	88	Ra	radium -
		_				က	<u> </u>	lithium 7	1	Na	sodium 23	19	¥	potassium 39	37	Rb	rubidium 85	55	Cs	caesium 133	87	Ŧ	francium -
																			_				

71 Lu	lutetium 175	103	۲	lawrencium —
02 Yb				_
e9 Tm	thulium 169	101	Md	mendelevium —
₈₈ Г	erbium 167	100	Fm	fermium -
0H ²⁹	holmium 165	66	Es	einsteinium —
°° Dy	dysprosium 163	86	ర	califomium —
65 Tb	terbium 159	97	BK	berkelium
64 Gd	gadolinium 157	96	Cm	curium -
63 Eu	europium 152	92	Am	americium —
62 Sm	samarium 150	94	Pn	plutonium —
e1 Pm	promethium	93	ď	neptunium —
°° PN	neodymium 144	92	\supset	uranium 238
59 Pr	praseodymium 141	91	Pa	protactinium 231
58 Ce	cerium 140	06	드	thorium 232
57 La	lanthanum 139	68	Ac	actinium _

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).